3.857 \(\int \frac {(b \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=149 \[ \frac {A b \sin ^3(c+d x) \sqrt {b \cos (c+d x)}}{3 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {A b \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {b B \sin (c+d x) \sqrt {b \cos (c+d x)}}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {b B \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {\cos (c+d x)}} \]

[Out]

1/2*b*B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+A*b*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3
/2)+1/3*A*b*sin(d*x+c)^3*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(7/2)+1/2*b*B*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1
/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {17, 2748, 3767, 3768, 3770} \[ \frac {A b \sin ^3(c+d x) \sqrt {b \cos (c+d x)}}{3 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {A b \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {b B \sin (c+d x) \sqrt {b \cos (c+d x)}}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {b B \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(b*B*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(2*d*Sqrt[Cos[c + d*x]]) + (b*B*Sqrt[b*Cos[c + d*x]]*Sin[c +
d*x])/(2*d*Cos[c + d*x]^(5/2)) + (A*b*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)) + (A*b*Sqrt[b*
Cos[c + d*x]]*Sin[c + d*x]^3)/(3*d*Cos[c + d*x]^(7/2))

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m + 1/2)*b^(n - 1/2)*Sqrt[b*v])/Sqrt[a*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {(b \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx &=\frac {\left (b \sqrt {b \cos (c+d x)}\right ) \int (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {\left (A b \sqrt {b \cos (c+d x)}\right ) \int \sec ^4(c+d x) \, dx}{\sqrt {\cos (c+d x)}}+\frac {\left (b B \sqrt {b \cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {b B \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {\left (b B \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 \sqrt {\cos (c+d x)}}-\frac {\left (A b \sqrt {b \cos (c+d x)}\right ) \operatorname {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d \sqrt {\cos (c+d x)}}\\ &=\frac {b B \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{2 d \sqrt {\cos (c+d x)}}+\frac {b B \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {A b \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {A b \sqrt {b \cos (c+d x)} \sin ^3(c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 77, normalized size = 0.52 \[ \frac {b \sqrt {b \cos (c+d x)} \left (2 A (\cos (2 (c+d x))+2) \tan (c+d x)+3 B \sin (c+d x)+3 B \cos ^2(c+d x) \tanh ^{-1}(\sin (c+d x))\right )}{6 d \cos ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(b*Sqrt[b*Cos[c + d*x]]*(3*B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + 3*B*Sin[c + d*x] + 2*A*(2 + Cos[2*(c + d*x
)])*Tan[c + d*x]))/(6*d*Cos[c + d*x]^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 260, normalized size = 1.74 \[ \left [\frac {3 \, B b^{\frac {3}{2}} \cos \left (d x + c\right )^{4} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (4 \, A b \cos \left (d x + c\right )^{2} + 3 \, B b \cos \left (d x + c\right ) + 2 \, A b\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{4}}, -\frac {3 \, B \sqrt {-b} b \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{4} - {\left (4 \, A b \cos \left (d x + c\right )^{2} + 3 \, B b \cos \left (d x + c\right ) + 2 \, A b\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

[1/12*(3*B*b^(3/2)*cos(d*x + c)^4*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*s
in(d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(4*A*b*cos(d*x + c)^2 + 3*B*b*cos(d*x + c) + 2*A*b)*sqrt(b
*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4), -1/6*(3*B*sqrt(-b)*b*arctan(sqrt(b*cos(d*x
 + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^4 - (4*A*b*cos(d*x + c)^2 + 3*B*b*cos(d*x +
c) + 2*A*b)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {11}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)/cos(d*x + c)^(11/2), x)

________________________________________________________________________________________

maple [A]  time = 0.20, size = 139, normalized size = 0.93 \[ \frac {\left (-3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+3 B \left (\cos ^{3}\left (d x +c \right )\right ) \ln \left (\frac {1-\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )+4 A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 B \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 A \sin \left (d x +c \right )\right ) \left (b \cos \left (d x +c \right )\right )^{\frac {3}{2}}}{6 d \cos \left (d x +c \right )^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x)

[Out]

1/6/d*(-3*B*cos(d*x+c)^3*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))+3*B*cos(d*x+c)^3*ln((1-cos(d*x+c)+sin(d*x+
c))/sin(d*x+c))+4*A*cos(d*x+c)^2*sin(d*x+c)+3*B*cos(d*x+c)*sin(d*x+c)+2*A*sin(d*x+c))*(b*cos(d*x+c))^(3/2)/cos
(d*x+c)^(9/2)

________________________________________________________________________________________

maxima [B]  time = 1.13, size = 992, normalized size = 6.66 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

-1/12*(16*(3*b*cos(6*d*x + 6*c)*sin(2*d*x + 2*c) + 9*b*cos(4*d*x + 4*c)*sin(2*d*x + 2*c) - (3*b*cos(2*d*x + 2*
c) + b)*sin(6*d*x + 6*c) - 3*(3*b*cos(2*d*x + 2*c) + b)*sin(4*d*x + 4*c))*A*sqrt(b)/(2*(3*cos(4*d*x + 4*c) + 3
*cos(2*d*x + 2*c) + 1)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 9
*cos(4*d*x + 4*c)^2 + 9*cos(2*d*x + 2*c)^2 + 6*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*
d*x + 6*c)^2 + 9*sin(4*d*x + 4*c)^2 + 18*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sin(2*d*x + 2*c)^2 + 6*cos(2*d*
x + 2*c) + 1) + 3*(4*(b*sin(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c))) - 4*(b*sin(4*d*x + 4*c) + 2*b*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) -
 (b*cos(4*d*x + 4*c)^2 + 4*b*cos(2*d*x + 2*c)^2 + b*sin(4*d*x + 4*c)^2 + 4*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c)
 + 4*b*sin(2*d*x + 2*c)^2 + 2*(2*b*cos(2*d*x + 2*c) + b)*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*log(cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 +
2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + (b*cos(4*d*x + 4*c)^2 + 4*b*cos(2*d*x + 2*c)^2 +
 b*sin(4*d*x + 4*c)^2 + 4*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b*sin(2*d*x + 2*c)^2 + 2*(2*b*cos(2*d*x + 2*
c) + b)*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^
2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 1) - 4*(b*cos(4*d*x + 4*c) + 2*b*cos(2*d*x + 2*c) + b)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c))) + 4*(b*cos(4*d*x + 4*c) + 2*b*cos(2*d*x + 2*c) + b)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
)*B*sqrt(b)/(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d
*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^{11/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(11/2),x)

[Out]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(11/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________